APPROXIMATE COMPUTATION OF THE LEAST GUARANTEED ESTIMATE IN LINEAR DIFFERENTIAL GAMES WITH A FIXED DURATION*

M.S. NIKOL'SKII

A method for the approximate computation of the least guaranteed game estimate is constructed for linear fixed-duration differential games, and an estimate of its rate of convergence is given. The paper is closely related to /1-9/.

The motion of an *n*-dimensional vector $z \in \mathbb{R}^n$ is described by the equation

$$\begin{aligned} z^{'} &= A(t) \ z + u + v, \ z(t_{0}) = z_{0}; \ t \in I = [t_{0}, \ T] \ (t_{0} < T) \\ u \in P(t) \subset \mathbb{R}^{n}, \ v \in Q(t) \subset \mathbb{R}^{n}; \ |P(t)| \leq a_{1}(t), \ |Q(t)| \leq a_{2}(t) \end{aligned}$$
(1)

The elements of the *n*th-order square A(t) are defined and are Lebesgue-summable on I; P(t) and Q(t) are nonempty compacts for each $t \in I$ and they depend measurably on $t \in I$ (see /10/) and satisfy the stated conditions; moreover $|X| = \max_{x \in X} |x|$ for a nonempty compactum $X \subset R^n, a_i(t)$ is a Lebesgue-summable function on I. The performance of the pair of measurable functions $u(t) \in P(t), v(t) \in Q(t), t \in I$, is estimated by the quantity $\varphi(z(T))$ ($\varphi(z)$ is a scalar function continuous on R^n). The first player deals with the choice of u and strives to minimize $\varphi(z(T))$. The second player deals with the choice of vector v and strives to maximize $\varphi(z(T))$. The second player selects the measurable control $v(t) \in Q(t)$ as a program control on

I. The measurable control $u(t) \in P(t)$ is at the first player's disposal and is constructed for $t \in I$ on the basis of knowing Eq.(1), the initial state $z(t_0) = z_0$ and the control v(s) for $t_0 \leq s \leq t$, in the form $u(t) = U(t, v_t(\cdot))$, where $v_t(\cdot)$ denotes the function $v(s), t_0 \leq s \leq t$, while the mapping U is defined on the set of measurable functions $v(t) \in Q(t), t \in I$, and maps such functions $v(\cdot)$ into the set of measurable functions $u(t) = P(t), t \in I$.

Game (1) is examined from the first player's viewpoint. It is assumed that he knows Eq. (1), the vector z_0 , the function φ and the control $v_t(\cdot)$ for each $t \in I$. It is natural to characterize the performance of the first player's given strategy U by the quantity $\sup_{v(\cdot)} \varphi(z(T))$, where z(T) (see /1/) corresponds to the measurable controls v(t), $u(t) = U(t, v_t(\cdot))$, $t \in I$. An important characteristic of the first player's capabilities is the quantity

$$\gamma = \inf_{U} \sup_{z(\cdot)} \varphi(z(T))$$
(3)

which is called the least guaranteed estimate. The computation of the quantity γ causes great difficulty. Therefore, an approximate computation of γ to any preassigned accuracy is of interest.

By $\Phi(t, s)$ $(t_0 \leq s \leq t \leq T)$ we denote the matrizant (see /11/) of the homogeneous equation $x^* = A(t)x$. We note that for fixed measurable $u(t) \in P(t), v(t) \equiv Q(t), t \in I$, the Cauchy formula

$$z(t) = \Phi(t, t_0) z_0 + \int_{t_0}^{t} \Phi(t, s) (u(s) + v(s)) ds$$
(4)

is valid for the solution of Eq.(1). We set

$$D = \Phi(T, t_0) z_0 + \int_{t_0}^{T} \Phi(T, s) (P(s) + Q(s)) ds$$
⁽⁵⁾

where the integral is understood in the sense usual for the theory of multivalued mappings (see /10/) and the plus sign signifies the algebraic addition of sets. It can be proved that D is a nonempty convex compactum.

On $(T, 2T - t_0]$ we define the matrix-valued function A(t) (see (1)) as an *n*-th-order null square matrix. Now the matrizant $\Phi(t, s)$ is defined for $t_0 \leq s \leq t \leq 2T - t_0$. The scalar product in \mathbb{R}^n of arbitrary vectors a and b is defined by the formula $(a, b) = a_1b_1 + \ldots + a_nb_n$, where a_i, b_i are the coordinates of vectors a, b. We note the relation ($|\cdot|$ is the operator norm of a matrix)

^{*}Prikl.Matem.Mekhan.,46,No.4,pp.691-693,1982

$$\begin{aligned} |\Phi(t,s)| &\leq E(s,t), \quad t_0 \leqslant s \leqslant t \leqslant 2T - t_0 \\ |\Lambda^{-1}(t)| &\leq E(t_0,t), \quad t_0 \leqslant t \leqslant 2T - t_0 \end{aligned}$$
(6)
$$E(\alpha,\beta) &= \exp \int_{\alpha}^{\beta} |A(r)| dr, \quad t_0 \leqslant \alpha \leqslant \beta \leqslant 2T - t_0 \\ \Lambda(t) &= \Phi(t,t_0), \quad t \in [t_0, 2T - t_0] \\ \Phi(t,s) &= \Lambda(t) \Lambda^{-1}(s), \quad t_0 \leqslant s \leqslant t \leqslant 2T - t_0 \end{aligned}$$

useful subsequently. For $r \ge 0$ we assume

$$\Omega\left(r\right) = \max_{\mathbf{x}', \, \mathbf{x}' \in D, \, \left|\mathbf{x}' - \mathbf{x}'\right| \leqslant r} \left| \varphi\left(\mathbf{x}'\right) - \varphi\left(\mathbf{x}'\right) \right| \tag{7}$$

From the continuity of $\varphi(x)$ on D it follows that $\Omega(r) \to 0$ as $r \to +0$. If $\varphi(x)$ satisfies a Lipschitz condition on D, then $\Omega(r) = O(r)$ as $r \to +0$. Let $N \ge 1$ be an integer. We set

$$h = \frac{T - t_0}{N}, \quad B_i = \int_{(i-1)h}^{ih} \Phi(T, s) P(s) \, ds, \quad C_i = \int_{(i-1)h}^{ih} \Phi(T, s) Q(s) \, ds$$
(8)
$$i = 1, \ldots, N$$

where the integral is understood in the sense usual for the theory of multivalued mappings /10/. We observe that B_i and C_i are nonempty convex compacta. With the number N we associate the quantity

$$\gamma_{N} = \max_{\eta_{i} \in \mathcal{C}_{i}} \min_{\xi_{i} \in \mathcal{B}_{i}} \cdots \max_{\eta_{N} \in \mathcal{C}_{N}} \min_{\xi_{N} \in \mathcal{B}_{N}} \varphi \left(\Phi \left(T, t_{0} \right) z_{0} + \sum_{i=1}^{N} \left(\xi_{i} + \eta_{i} \right) \right)$$
(9)

Using formulas (3), (8), (9), it can be shown that

$$\gamma_N \leqslant \gamma$$
 (10)

We obtain the estimate $\gamma - \gamma_N$ when $N \ge 1$. Let us consider the integral $(v \ (s) \in Q \ (s), s \in I)$ is an arbitrary measurable function; $v \ (s - h) = 0 \in \mathbb{R}^n$, $t_0 \le s < t_0 + h$

$$J(v(\cdot)) = \int_{t_0}^{T} \Lambda^{-1}(s) (v(s) - v(s - h)) ds$$
(11)

We have

$$\int_{t_{s}}^{T} \Lambda^{-1}(s) v(s-h) ds = \int_{t_{s}}^{T} \Lambda^{-1}(s+h) v(s) ds - \int_{T-h}^{T} \Lambda^{-1}(s+h) v(s) ds =$$

$$\int_{t_{s}}^{T} \Lambda^{-1}(s) v(s) ds + \int_{t_{s}}^{T} (\Lambda^{-1}(s+h) - \Lambda^{-1}(s)) v(s) ds - \int_{T-h}^{T} \Lambda^{-1}(s+h) v(s) ds$$
(12)

We note that $d(\Lambda^{-1}(t))^*/dt = -A^*(t)(\Lambda^{-1}(t))^*$, where the asterisk denotes transposition. Hence (6) yields the following inequality:

$$|\Lambda^{-1}(s+h) - \Lambda^{-1}(s)| \leq \alpha(s,h) = \int_{s}^{s+h} |A(t)| E(t_0,t) dt, \quad t_0 \leq s \leq T$$
⁽¹³⁾

From (2), (6), (11) - (13) it follows that

$$|J(v(\cdot))| \leq \beta(h) = \int_{t_0}^{T} \alpha(s, h) a_2(s) ds + \int_{T-h}^{T} E(t_0, s+h) a_2(s) ds$$
(14)

We set function H(s, h) equal to the Hausdorff distance between the compacta Q(s) and Q(s-h) for $t_0 \leq s \leq T$, where $Q(r) = \{0\}$ for $t_0 - h \leq r < t_0$. It can be proved that when $s \in I$ the function H(s, h) is Lebesgue-summable and

$$\int_{t_{h}}^{T} H(s, h) \, ds \to 0, \quad h \to 0 \tag{15}$$

Obviously

$$Q(s-h) \subset Q(s) + H(s,h) S_1, \quad s \in I$$
(16)

where S_1 is the *n*-dimensional unit ball centered at the origin.

For given $s \in I$, $x \in Q$ (s - h) we consider the following equation relative to $\zeta = (\xi^*; \eta^*)$:

$$\xi + \eta = x, \quad \xi \in Q(s), \quad \eta \in H(s, h) \ S_1$$

Among the solutions ζ we pick out the lexicographic minimum $\zeta(s, x) = (\xi^*(s, x); \eta^*(s, x))$. For an arbitrary measurable function $v(s) \in Q(s), s \in I$, we set

$$v_0(s, h) = \xi(s, v((s-h)), v(s) = 0 \in \mathbb{R}^n, t_0 - h \leq s < t_0$$

We note that the inequality

$$|v_0(s, h) - v(s - h)| \le H(s, h), s \in I$$

holds on the strength of the definition of $v_0(s, h)$ and of (16). Hence from (6), (11), (14) follows

$$\left| \int_{t_{\bullet}}^{s} \Phi(T, s) (v(s) - v_{0}(s, h)) ds \right| \leq \mu(h) = E(t_{0}, T) \left[\beta(h) + \int_{t_{\bullet}}^{T} H(s, h) E(t_{0}, s) ds \right]$$
(17)

where, by virtue of (13) - (15), each summand within the brackets tends to zero as $h \rightarrow 0$. Using formulas (4), (10), (17), we can prove the validity of the inequality

 $\gamma_N \leqslant \gamma \leqslant \gamma_N + \Omega \ (\mu \ (h)), \quad h = (T - t_0)/N$

where $\Omega(r)$, $\mu(h)$ are defined by formulas (7), (17). If the function A(t) is uniformly bounded in norm on I, Q(t) satisfies a Lipschitz condition (in the sense of the Hausdorff metric) on Iand the function $\varphi(x)$ satisfies a Lipschitz condition on D (see (5)), then from (7), (13), (14), (17) it follows that $\Omega(\mu(h)) = O(h)$ as $h \to 0$.

REFERENCES

- 1. KRASOVSKII N.N. and SUBBOTIN A.I., Positional Differential Games. Moscow, NAUKA, 1974.
- CHENTSOV A.G., On a game problem of encounter at a prescribed instant. Mat. Sb., Vol.99, No.3, 1976.
- 3. CHISTIAKOV S.V., On solving pursuit game problems. PMM Vol.41, No.5, 1977.
- 4. PSHENICHNYI B.N. and SAGAIDAK M.I., On fixed-time differential games. KIBERNETIKA, No.2, 1970.
- 5. CHERNOUS'KO F.L. and MELIKIAN A.A., Game Problems of Control and Search. Moscow, NAUKA, 1978.
- 6. PETROSIAN L.A., Differential Pursuit Games. Leningrad. Izd. Leningradsk. Gos. Univ., 1977.
- 7. FRIEDMAN A., Differential Games. New York: Wiley-Interscience, 1971.
- POLISHCHUK E.G. Upper estimate for the value of a linear differential game. PMM Vol.44, No.2, 1980.
- NIKOL'SKII M.S., On certain fixed-time differential games. Dokl. Akad. Nauk SSSR, Vol.240, No.2, 1978.
- CASTAING Ch. Sur les multi-applications measurables. Rev. franc. inform. et rech. opér., No.1, 1967.
- 11. DEMIDOVICH B.P., Lectures on the Mathematical Theory of Stability. Moscow, NAUKA, 1967.

Translated by N.H.C.