APPROXIMATE COMPUTATION OF THE LEAST GUARANTEED ESTIMATE in Linear differential games with a fixed duration*

M.S. NIKOL'SKII

A method for the approximate computation of the least guaranteed game estimate is constructed for linear fixed-duration differential games, and an estimate of its rate of convergence is given. The paper is closely related to /1-9/.

The motion of an n-dimensional vector $z \in R^{n}$ is described by the equation

$$
\begin{align*}
& z^{\prime}=A(t) z+u+v, \quad z\left(t_{0}\right)=z_{0} ; t \vDash I=\left[t_{0}, T\right]\left(t_{0}<T\right) \tag{1}\\
& u \in P(t) \subset R^{n}, \quad v \in Q(t) \subset R^{n} ; \quad|P(t)| \leqslant a_{1}(t), \quad|Q(t)| \leqslant a_{2}(t) \tag{2}
\end{align*}
$$

The elements of the in th-order square $A(t)$ are defined and are Lebesgue-summable on I; $P(t)$ and $Q(t)$ are nonempty compacta for each $t \in I$ and they depend measurably on $t \in I$ (see $/ 10 /$) and satisfy the stated conditions; moreover $|X|=\max _{x \in X}|x|$ for a nonempty compactum $X \subset R^{n}, a_{i}(t)$ is a Lebesque-summable function on I. The performance of the pair of measurable functions $u(t) \in P(t), v(t) \in Q(t), t \equiv I$, is estimated by the quantity $\varphi(z(T))$ ((z) is a scalar function continuous on R^{n}). The first player deals with the choice of u and strives to minimize $\varphi(z(T))$. The second player deals with the choice of vector v and strives to maximize $\varphi(z(T)$. The second player selects the measurable control $v(t) \in Q(t)$ as a program control on
I. The measurable control $u(t) \in P(t)$ is at the first player's disposal and is constructed for $t \in I$ on the basis of knowing Eq. (1), the initial state $z\left(t_{0}\right)=z_{0}$ and the control $v(s)$ for $t_{0} \leqslant s \leqslant t$, in the form $u(t)=U\left(t, v_{t}(\cdot)\right)$, where $v_{t}(\cdot)$ denotes the function $v(s), t_{0} \leqslant s \leqslant t$, while the mapping U is defined on the set of measurable functions $v(t) \in Q(t), t \in I$, and maps such functions $v(\cdot)$ into the set of measurable functions $u(t) \in P(r), t \in I$.

Game (1) is examined from the first player's viewpoint. It is assumed that he knows Eq. (1), the vector i_{0}, the function φ and the control $v_{t}(\cdot)$ for each $t \in I$. It is natural to charactcrize the performance of the first player's given strategy U by the quantity supr() $\%(z(T))$, where $z(T)$ (see /l/) corresponds to the measurable controls $v(t), u(t)=U\left(i, v_{t}(\cdot)\right), t \in I$. An inportant characteristic of the first player's capabilities is the quantity

$$
\begin{equation*}
\gamma=\inf _{U} \sup _{t(\cdot)} \varphi(z(T)) \tag{3}
\end{equation*}
$$

which is called the least quaranteed estimate. The computation of the quantity γ causes great difficulty. Therefore, an approximate computation of γ to any preassigned accuracy is of interest.

By $\Phi(t, s)\left(t_{0} \leqslant s \leqslant t \leqslant T\right)$ we denote the matrizant (see /11/) of the homoqeneous equation $x^{*}=A(t) x$. We note that for fixed measurable $u(t) \in P(t), v(t)=Q(t), t \in I$, the Cauchy formula

$$
\begin{equation*}
z(t)=\Phi\left(t, t_{0}\right) z_{0}+\int_{t_{0}}^{t} \Phi(t, s)(u(s)+v(s)) d s \tag{4}
\end{equation*}
$$

is valid for the solution of Eq. (1). We set

$$
\begin{equation*}
D=\Phi\left(T, t_{0}\right) z_{0}+\int_{t_{0}}^{r} \Phi(T, s)(P(s)+Q(s)) d s \tag{5}
\end{equation*}
$$

where the integral is understood in the sense usual for the theory of multivalued mappings (see /10/) and the plus sign signifies the algebraic addition of sets. It can be proved that D is a nonempty convex compactum.

On ($T, 2 T-t_{0}$] we define the matrix-valued function $A(t)$ (see (l)) as an nth-order null square matrix. Now the matrizant $\Phi(t, s)$ is defined for $t_{0} \leqslant s \leqslant t \leqslant 2 T-t_{0}$. The scalar product in R^{n} of arbitrary vectors a and b is defined by the formula $(a, b)=a_{1} b_{1}+\ldots+a_{n} b_{n}$, where a_{i}, b_{i} are the coordinates of vectors a, b. We note the relation ($|\cdot|$ is the operator norm of a matrix)

[^0]\[

$$
\begin{align*}
& |\Phi(t, s)| \leqslant E(s, t), \quad t_{0} \leqslant s \leqslant t \leqslant 2 T-t_{0} \tag{6}\\
& \left|\Lambda^{-1}(t)\right| \leqslant E\left(t_{0}, t\right), \quad t_{0} \leqslant t \leqslant 2 T-t_{0} \\
& E(\alpha, \beta)=\exp \int_{\alpha}^{\beta}|A(r)| d r, \quad t_{0} \leqslant \alpha \leqslant \beta \leqslant 2 T-t_{0} \\
& \Lambda(t)=\Phi\left(t, t_{0}\right), \quad t \in\left[t_{0}, 2 T-t_{0}\right] \\
& \Phi(t, s)=\Lambda(t) \Lambda^{-1}(s), \quad t_{0} \leqslant s \leqslant t \leqslant 2 T-t_{0}
\end{align*}
$$
\]

useful subsequently. For $r \geqslant 0$ we assume

$$
\begin{equation*}
\Omega(r)=\max _{x^{\prime}, x^{\prime \prime} \in D,\left|x^{\prime}-x^{\prime \prime}\right| \leqslant r}\left|\varphi\left(x^{\prime}\right)-\varphi\left(x^{\prime \prime}\right)\right| \tag{7}
\end{equation*}
$$

From the continuity of $\varphi(x)$ on D it follows that $\Omega(r) \rightarrow 0$ as $r \rightarrow+0$. If $\varphi(x)$ satisfies a Lipschitz condition on D, then $\Omega(r)=O(r)$ as $r \rightarrow+0$. Let $N \geqslant 1$ be an integer. We set

$$
\begin{align*}
& h=\frac{T-t_{0}}{N}, \quad B_{i}=\int_{(i-1) h}^{i h} \Phi(T, s) P(s) d s, \quad C_{i}=\int_{(i-1) h}^{i h} \Phi(T, s) Q(s) d s \tag{8}\\
& i=1, \ldots, N
\end{align*}
$$

where the integral is understood in the sense usual for the theory of multivalued mappings $/ 10 /$. We obscrve that B_{i} and C_{i} arc nonempty convex compacta. With the number N we associate the quantity

$$
\begin{equation*}
\gamma_{N}=\max _{\eta_{1} \in C_{1}} \min _{\xi_{1} \in B_{1}} \cdots \max _{\eta_{N} \equiv C_{N}} \min _{\xi_{N} \equiv B_{N}} \varphi\left(\Phi\left(T, t_{0}\right) z_{0}+\sum_{i=1}^{N}\left(\xi_{i}+\eta_{i}\right)\right) \tag{9}
\end{equation*}
$$

Using formulas (3), (8), (9), it can be shown that

$$
\begin{equation*}
\gamma_{N} \leqslant \gamma \tag{10}
\end{equation*}
$$

We obtain the estimate $\gamma-\gamma_{N}$ when $N \geqslant 1$. Let us consider the integral $(v(s) \in Q(s), s \in I$ is an arbitrary measurable function; $\left.v(s-h)=0 \in R^{n}, t_{0} \leqslant s<t_{0}+h\right)$

$$
\begin{equation*}
J(v(\cdot))==\int_{i_{0}}^{T} \Lambda^{-1}(s)(v(s)-v(s-h)) d s \tag{11}
\end{equation*}
$$

We have

$$
\begin{align*}
& \int_{t_{0}}^{T} \Lambda^{-1}(s) v(s-h) d s=\int_{i_{0}}^{T} \Lambda^{-1}(s+h) v(s) d s-\int_{T_{-h}}^{T} \Lambda^{-1}(s+h) v(s) d s= \tag{12}\\
& \int_{i_{0}}^{T} \Lambda^{-1}(s) v(s) d s+\int_{i_{0}}^{T}\left(\Lambda^{-1}(s+h)-\Lambda^{-1}(s)\right) v(s) d s-\int_{T-h}^{T} \Lambda^{-1}(s+h) v(s) d s
\end{align*}
$$

We note that $d\left(\Lambda^{-1}(t)\right)^{*} / d t=-A^{*}(t)\left(\Lambda^{-1}(t)\right)^{*}$, where the asterisk denotes transposition. Ilence (6) yields the following inequality:

$$
\begin{equation*}
\left|\Lambda^{-1}(s+h)-\Lambda^{-1}(s)\right| \leqslant \alpha(s, h)=\int_{8}^{s+h}|A(t)| E\left(t_{0}, t\right) d t, \quad t_{0} \leqslant s \leqslant T \tag{13}
\end{equation*}
$$

From (2), (6), (11)-(13) it follows that

$$
\begin{equation*}
|J(v(\cdot))| \leqslant \beta(h)=\int_{t_{0}}^{T} \alpha(s, h) a_{2}(s) d s+\int_{T-h}^{T} E\left(t_{0}, s+h\right) a_{2}(s) d s \tag{14}
\end{equation*}
$$

We set function $H(s, h)$ equal to the Hausdorff distance between the compacta $Q(s)$ and $Q(s-h)$ for $t_{0} \leqslant s \leqslant T$, where $Q(r)=\{0\}$ for $t_{0}-h \leqslant r<t_{0}$. It can be proved that when $s \in I$ the function $H(s, h)$ is Lebesgue-summable and

$$
\begin{equation*}
\int_{\boldsymbol{L}_{1}}^{\boldsymbol{T}} H(s, h) d s \rightarrow 0, \quad h \rightarrow 0 \tag{15}
\end{equation*}
$$

Obviously

$$
\begin{equation*}
Q(s-h) \subset Q(s)+H(s, h) S_{1}, \quad s \in I \tag{16}
\end{equation*}
$$

where S_{1} is the n-dimensional unit ball centered at the origin.
For given $s \in I, x \in Q(s-h)$ we consider the following equation relative to $\zeta=\left(\xi^{*} ; \eta^{*}\right)$:

$$
\xi+\eta=x, \quad \xi \in Q(s), \quad \eta \in H(s, h) s_{1}
$$

Among the solutions ζ we pick out the lexicographic minimum $\zeta(s, x)=\left(\xi^{*}(s, x) ; \eta^{*}(s, x)\right.$. For ar arbitrary measurable function $v(s) \in Q(s), s \in I$, we set

$$
v_{0}(s, h)=\xi\left(s, v((s-h)), \quad v(s)=0 \in R^{n}, t_{0}-h \leqslant s<t_{0}\right.
$$

We note that the inequality

$$
\left|v_{0}(s, h)-v(s-h)\right| \leqslant H(s, h), \quad s \in I
$$

holds on the strength of the definition of $v_{0}(s, h)$ and of (16). Hence from (6), (11), (14) follows

$$
\begin{equation*}
\left|\int_{t_{0}}^{T} \Phi(T, s)\left(v(s)-v_{0}(s, h)\right) d s\right| \leqslant \mu(h)-E\left(t_{0}, T\right)\left[\beta(h)+\int_{t_{0}}^{T} H(s, h) E\left(t_{0}, s\right) d s\right] \tag{17}
\end{equation*}
$$

where, by virtue of (13)-(15), each summand within the brackets tends to zero as $h \rightarrow 0$. Using formulas (4), (10), (17), we can prove the validity of the inequality

$$
\gamma_{N} \leqslant \gamma \leqslant \gamma_{N}+\Omega(\mu(h)), \quad h=\left(T-t_{0}\right) / N
$$

where $\Omega(r), \mu(h)$ are defined by formulas (7), (17). If the function $A(t)$ is uniformly bounded in norm on $I, Q(t)$ satisfies a Lipschitz condition (in the sense of the Hausdorff metric) on I and the function $\varphi(x)$ satisfies a Lipschitz condition on D (see (5)), then from (7), (13), (14), (17) it follows that $\Omega(\mu(h))=O(h)$ as $h \rightarrow 0$.

REFERENCES

1. KRASOVSKII N.N. and SUBBOTIN A.I., Positional Differential Games. Moscow, NAUKA, 1974.
2. CHENTSOV A.G., On a game problem of encounter at a prescribed instant. Mat. Sb., Vol.99, No. 3, 1976:
3. CHISTIAKOV S.V., On solving pursuit game problems. PMM Vol. 41, No. 5, 1977.
4. PSHENICHNYI B.N. and SAGAIDAK M.I., On fixed-time differential games. KIBERNETIKA, No. 2 , 1970.
5. CHERNOUS'KO F.L. and MELIKIAN A.A., Game Problems of Control and Search. Moscow, NAUKA, 1978.
6. PETROSIAN L.A., Differential Pursuit Games. Leningrad. Izd. Leningradsk. Gos. Univ., 1977.
7. FRIEDMAN A., Differential Games. New York: Wiley-Interscience, 1971.
8. POLISHCHUK E.G. Upper estimate for the value of a linear differential game. PMM Vol. 44, No. 2, 1980.
9. NIKOL'SKII M.S., On certain fixed-time differential games. Dokl. Akad. Nauk SSSR, Vol. 240 , No. 2, 1978.
10. CASTAING Ch. Sur les multi-applications measurables. Rev. franc. inform. et rech. oper., No. 1, 1967.
11. DEMIDOVICH B.P., Lectures on the Mathematical Theory of Stability. Moscow, NAUKA, 1967.

[^0]: *Frikl.Matem. Mekhan. , 16, No. 4,pp.691-693,1982

